Revolutionary Physics - Based Design Tools for Quiet Helicopters
نویسندگان
چکیده
This paper describes a revolutionary, fully-integrated approach for modeling the noise characteristics of maneuvering rotorcraft. The primary objective of this effort is the development of a physics-based software tool that enables the design of quiet rotors without performance penalties. This tool shall accurately predict the rotorcraft flight state and rotor trim, the unsteady aerodynamic loading, the time-dependent flow field around the rotor blades, and the radiated noise, in all flight conditions including maneuver. This objective is achieved through the use of advanced computational fluid dynamics (CFD), computational structural dynamics (CSD), and computational aeroacoustics (CAA). The predictions are validated and verified against benchmark test cases. The advanced CFD methods include innovations in Large Eddy Simulation, novel techniques for flexible deforming blades, high-order methods for accuracy, and adaptive grids to accurately capture important flow features. CSD methods are coupled with the CFD and acoustics codes using generic interfaces. The aeroacoustic predictions build on an advanced method with enhancements for maneuvering flight.
منابع مشابه
Rotor Sizing of Helicopters Using Statistical Approach
This paper is concerned with the statistical model development issues, necessary for rapid estimation of the rotor sizing for single main rotor helicopters at the preliminary design stage. However, Central Composite Design (CCD) method, simulation-based data collection, linear regression analysis, mathematical modelsdevelopmentand validations through the analysis of variance (ANOVA) were perfor...
متن کاملDesign of Optimum Payload for Mid-life Upgrade of Helicopters (Stage V-VI)
To meet additional mission requirements of new battle scenarios and to incorporate state-of-the-art mission systems, mid-life upgrade of helicopters is a cost-effective option. To upgrade, “mission payload systems” with advanced technology are to be evaluated for incorporation in helicopter design. This requires tools to ensure that mission capabilities are not compromised. In this paper, the f...
متن کاملAutomatic Landing of Small Helicopters on 4 DOF Moving Platforms
In this research, an automatic control system is designed for landing of a small helicopter on a 4 DOF moving platform. The platform has three translational and one directional degree of freedom. The controller design approach is based on development of helicopter nonlinear dynamic model into the SDC (State Dependent Coefficient) form and real time solving of state dependent Riccati equation (S...
متن کاملImproved Mathematical Model for Helicopters Flight Dynamics Applications
The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...
متن کامل